通分のやり方と練習問題

通分:いくつかの分数の分母をそろえること。

例:$\dfrac{1}{2}$ と $\dfrac{1}{4}$ を通分すると $\dfrac{2}{4}$ と $\dfrac{1}{4}$

具体例

$\dfrac{1}{2}$ と $\dfrac{1}{4}$ という二つの分数は、分母が $2$ と $4$ でそろっていません。

そこで、分母と分子に同じ数字をかけても変わらないので、$\dfrac{1}{2}$ の分母と分子に $2$ をかけると
$\dfrac{2}{4}$ と $\dfrac{1}{4}$ という分母が同じ二つの分数で表せます。

補足:ケーキを「$2$ つにわけてそのうちの $1$ つを食べる($\tfrac{1}{2}$)」「$4$ つにわけてそのうちの $2$ つを食べる($\tfrac{2}{4}$)」というのは同じことですね。

通分の仕方

$2$ つの分数があるとき、相手の分母を自分の分母と分子にかけると必ず通分できます。

例題1

$\dfrac{1}{4}$ と $\dfrac{2}{3}$ を通分せよ。

答え

$\dfrac{1}{4}$ について、相方の分母は $3$ であるので、分母と分子に $3$ をかけると、$\dfrac{3}{12}$ となる。
一方、$\dfrac{2}{3}$ について、相方の分母は $4$ であるので、分母と分子に $4$ をかけると、$\dfrac{8}{12}$ となる。

よって、$\dfrac{1}{4}$ と $\dfrac{2}{3}$ を通分すると、$\dfrac{3}{12}$ と $\dfrac{8}{12}$ となる。

関連:分数の計算の基本問題10問

数字が大きい場合の練習問題

例題2

$\dfrac{1}{8}$ と $\dfrac{5}{12}$ を通分せよ。

答え1

$\dfrac{1}{8}$ の分母と分子に $12$ をかけると、$\dfrac{12}{96}$

$\dfrac{5}{12}$ の分母と分子に $8$ をかけると、$\dfrac{40}{96}$

よって、$\dfrac{1}{8}$ と $\dfrac{5}{12}$ を通分すると、$\dfrac{12}{96}$ と $\dfrac{40}{96}$ である(これを答えとしても間違いではない)。さらに、これら二つの分数は同じ数で約分できる(両方とも分母も分子も $4$ でわれる)ので、結局答えは $\dfrac{3}{24}$ と $\dfrac{10}{24}$

答え2

$\dfrac{1}{8}$ の分母と分子に $3$ をかけると、$\dfrac{3}{24}$
$\dfrac{5}{12}$ の分母と分子に $2$ をかけると、$\dfrac{10}{24}$

よって、答えは$\dfrac{3}{24}$ と $\dfrac{10}{24}$


基本的には、相方の分母を自分の分母と分子にかけるという考え方でOKですが(→答え1)分母分子にかける数を工夫すると計算が楽になります(→答え2)。実は、通分した後の両方の分母は、通分前の二つの分母の最小公倍数になります。たくさん通分してコツをつかんでください!

3つの場合

分数が $3$ つの場合も、順番に通分していけばOKです!(できる人は一気に $3$ つそろえても構いません)

例題3

$\dfrac{1}{4}$ と $\dfrac{2}{3}$ と $\dfrac{5}{6}$ を通分せよ。

答え

まず、$\dfrac{1}{4}$ と $\dfrac{2}{3}$ を通分すると、$\dfrac{3}{12}$ と $\dfrac{8}{12}$ である(例題1でやった)。これらと、$\dfrac{5}{6}$ を通分するために、$\dfrac{5}{6}$ の分母分子に $2$ をかけると $\dfrac{10}{12}$ となり、分母が全て $12$ になる。

つまり、答えは $\dfrac{3}{12}$ と $\dfrac{8}{12}$ と $\dfrac{10}{12}$

ちなみに、通分の逆っぽい操作が約分です。

次:真分数、仮分数、帯分数の意味と例題
前:約分のやり方と計算ツール

スポンサーリンク

スポンサーリンク

誤植がございましたら @mathwordsnet までご連絡をお願いいたします。
ページ上部へ戻る