式の展開(やり方、公式、ツール)

多項式(単項式も含む)の積を1つの多項式で表すことを式を展開すると言う。

1.基本

分配法則を用いて順々に計算していきます。

・展開の例1(単項式×多項式)
$2y(3x+1)=6xy+2y$
(分配法則を用いただけ)

・展開の例2(多項式×多項式)
$(x^2+4)(x+3)\\
=x^2(x+3)+4(x+3)\\
=x^3+3x^2+4x+12$
(まず $(x+3)$ をひとかたまりと見て、分配法則を適用。そして、例1の形になったので、もう一度分配法則を適用して完成)

・展開の例3(項数が多い場合)
$(x^2+x+2)(x^3-1)\\
=x^2(x^3-1)+x(x^3-1)+2(x^3-1)\\
=x^5-x^2+x^4-x+2x^3-2\\
=x^5+x^4+2x^3-x^2-x-2$

2.代表的な展開公式(乗法公式)

分配法則を用いて一つずつ計算していけば必ず展開は成功します。しかし、計算の手間を省くための公式(展開公式、乗法公式)を用いれば、より速く展開できることがあります。

代表的な展開公式:
・$(x+y)^2=x^2+2xy+y^2$
・$(x-y)^2=x^2-2xy+y^2$
・$(x+a)(x+b)=x^2+(a+b)x+ab$
・$(x+y)(x-y)=x^2-y^2$
・$(x+y)^3=x^3+3x^2y+3xy^2+y^3$
・$(x-y)^3=x^3-3x^2y+3xy^2-y^3$
・$(x+y+z)^2$$=x^2+y^2+z^2+2xy+2yz+2zx$
→(a+b+c)^2、(a+b+c)^3の展開公式

他にもいくつかありますが、これだけ覚えておけば困ることはないでしょう。

公式を忘れた場合は分配法則を使って地道に計算しましょう!

3.式を展開するツール

式を入力したら展開してくれるツール(ソフト)とその使い方を紹介します。

先ほどの例3、$(x^2+x+2)(x^3-1)$ をツールを用いて展開してみます。

手順1:WolframAlphaにアクセスする。
手順2:式を入力して、エンターキーで計算スタート。なお、今回の例では(x^2+x+2)(x^3-1)と入力します。二乗は^2、三乗は^3で表現します。
手順3:しばらくしたら、展開された式が「Alternate forms:」という欄に表示されます。

なお、このやり方だと展開以外のいろいろな結果も出力されます。展開結果だけを素早く見たいときはexpandをつけてください。(この例だと、expand((x^2+x+2)(x^3-x-1)) と入力することになります)

次:(a+b+c)^2、(a+b+c)^3の展開公式
前:実数の意味と例(0、負の数、…)および実数でないものの例

スポンサーリンク

スポンサーリンク

誤植がございましたら @mathwordsnet までご連絡をお願いいたします。
ページ上部へ戻る