双曲線に関する公式まとめ

~目次~
・$x$ 軸をまたぐ双曲線
・$y$ 軸をまたぐ双曲線
・その他の公式

$x$ 軸をまたぐ双曲線

$\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1$
は図のような $x$ 軸をまたぐ双曲線を表します。ただし、このページでは $a,b$ は正の数とします。

双曲線の4つの公式

以下の4つの公式をセットで覚えておくとよいでしょう。
・$(-a,0),(a,0)$ を通る
・焦点の座標は $(-\sqrt{a^2+b^2},0)$ と $(\sqrt{a^2+b^2},0)$
・$y=\dfrac{b}{a}x$ と $y=-\dfrac{b}{a}x$ が漸近線
・双曲線上の点は、2点からの距離の差が $2a$ で一定

例題:$\dfrac{x^2}{9}-\dfrac{y^2}{4}=1$ という双曲線について、焦点の座標やグラフの漸近線などを求めてみましょう。

解答

双曲線の例

$a^2=9$、$b^2=4$ なので、$a=3$、$b=2$ として公式を使うと、
・$(-3,0),(3,0)$ を通る
・焦点の座標は $(-\sqrt{13},0)$ と $(\sqrt{13},0)$
・$y=\dfrac{2}{3}x$ と $y=-\dfrac{2}{3}x$ が漸近線

$y$ 軸をまたぐ双曲線

$\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=-1$
は図のような $y$ 軸をまたぐ双曲線を表します。右辺が $-1$ か $+1$ かによって、向きが変わっています。

y軸をまたぐ双曲線

この場合、以下の4つの公式が成立します。
・$(0,-b),(0,b)$ を通る
・焦点の座標は $(0,-\sqrt{a^2+b^2})$ と $(0,\sqrt{a^2+b^2})$
・$y=\dfrac{b}{a}x$ と $y=-\dfrac{b}{a}x$ が漸近線
・双曲線上の点は、2点からの距離の差が $2b$ で一定

その他の公式

$\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1$
という双曲線上の点 $(x_0,y_0)$ における接線の方程式は、
$\dfrac{x_0x}{a^2}-\dfrac{y_0y}{b^2}=1$
となります。(右辺が $-1$ の場合、接線の方程式の右辺も $-1$ になります)

反比例のグラフ $y=\dfrac{k}{x}$ は、双曲線のグラフを回転させたものです。
関連:反比例の意味と身近な例4つ

さらに、極座標における双曲線の一般形は、
$r=\dfrac{l}{1+e\cos\theta}$
となります(ただし、$1 < e$ です)。

次:半円の重心の位置を求める公式
前:双曲線に関する公式まとめ

スポンサーリンク

スポンサーリンク

誤植がございましたら @mathwordsnet までご連絡をお願いいたします。
ページ上部へ戻る