平均成長率とは、平均してどれくらいの割合で成長しているかを表す指標です。
年間平均成長率は、$\left(\dfrac{最後の年の値}{最初の年の値}\right)^{\frac{1}{年数-1}}-1$
という公式を使って計算することができます。
このページでは、平均成長率について、公式を使った計算の例と具体的な計算のやり方を解説します。また、平均成長率について覚えておくべき性質についても解説します。
平均成長率とは
平均成長率とは、平均してどれくらいの割合で成長しているかを表す指標です。例えば、年間平均成長率が $5$%の会社は、平均して毎年 $5$%ずつ成長していると言えます。
あくまで平均の話なので、$5$%より大きく成長する年も、赤字になってしまう年もあるかもしれません。
平均成長率の計算例
売上が、
初年度:$100$ 万円
第2年度:$110$ 万円
第3年度:$115$ 万円
第4年度:$130$ 万円
第5年度:$120$ 万円
のとき、この期間の売上の年間平均成長率を計算してみましょう。
$最初の年の値=100$、$最後の年の値=120$、$年数=5$
として平均成長率の計算式
$\left(\dfrac{最後の年の値}{最初の年の値}\right)^{\frac{1}{年数-1}}-1$
を使うと、
$\left(\dfrac{120}{100}\right)^\frac{1}{5-1}-1\fallingdotseq 0.0466$
となります。年間成長率は $0.0466$ つまり $4.66$%です。
ちなみに、各年の成長率から、全体の平均成長率を計算する際には相乗平均を使います。詳しくは相乗平均(幾何平均)の意味、図形的イメージ、活躍する例の最後で解説しています。
Google 検索窓で成長率を計算する
累乗根は Google の検索窓で計算できます。
例えば、先ほどの例の場合、検索窓に
(120/100)^(1/4)-1
と入力することで計算できます。
エクセルで成長率を計算する
エクセルで累乗根を計算する際にはPOWER関数を使います。
例えば、先ほどの例の場合、セルに
=POWER(120/100,1/4)-1
と入力することで計算できます。
平均成長率の公式の証明
以下、表記を簡潔にするため、最初の年の値を $A$、最後の年の値を $B$、年数を $n$ とします。
もし、初年度から $n$ 年度まで成長率 $r$ で成長し続けたらどうなるでしょうか?
初年度は、$A$
2年目は、$A\times (1+r)$
3年目は、$A\times (1+r)\times (1+r)$
というように、毎年、前年度の $(1+r)$ 倍になっていきます。
これを続けると、$n$ 年目には $A\times (1+r)^{n-1}$ になります。
$r$ が平均成長率であるとき、$n$ 年目の値が $B$ に等しいと考えることができるので、
$A(1+r)^{n-1}=B$
となります。
これを $r$ について解いていきます:
$(1+r)^{n-1}=\dfrac{B}{A}$
$1+r=\left(\dfrac{B}{A}\right)^{\frac{1}{n-1}}$
$r=\left(\dfrac{B}{A}\right)^{\frac{1}{n-1}}-1$
となります。
成長率の性質
$100\to 50\to 120$
と変化した場合も、
$100\to 150\to 120$
と変化した場合も、この期間の平均成長率は同じになります。
次回は 対数変化率の意味、計算方法と注意点 を解説します。